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We demonstrate that E × B shear, V 0
E×B, governs the dynamics of the cross phase of the peeling-

ballooning-(PB-)mode-driven heat flux, and so determines the evolution from the edge-localized (ELMy) H
mode to the quiescent (Q) H mode. A physics-based scaling of the critical E × B shearing rate (V 0

E×B;cr) for
accessing theQH mode is predicted. The ELMyH mode to theQH-mode evolution is shown to follow from
the conversion from a phase locked state to a phase slip state. In the phase locked state, PBmodes are pumped
continuously, so bursts occur. In the slip state, the PB activity is a coherent oscillation. Stronger E × B
shearing implies a higher phase slip frequency. This finding predicts a new state of cross phase dynamics and
shows a new way to understand the physics mechanism for ELMy to the QH-mode evolution.
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Understanding relaxation mechanisms in far from equi-
librium systems is an outstanding goal in many fields, e.g.,
fluid dynamics, solar physics, space physics, and labora-
tory plasma. Sometimes the relaxation exhibits violent
behavior, such as flares in the solar corona [1], magnetic
substorms in the magnetosphere [2], and disruptions in
tokamaks [3]. A common feature of these events is that
there is an extended period of free energy accumulation
prior to a sudden eruption and energy release. Sometimes
the relaxation is gradual, and occurs via excitations of
waves and turbulence, such as Alfvén waves in the solar
wind, drift waves in tokamaks, etc. In this scenario, the
energy is released in a much “softer” way. In the H-mode
edge of tokamaks, giant type-I ELMs and theQH mode are
examples of violent and soft energy release processes,
respectively. In this Letter, we relate violent and soft energy
release to phase evolution dynamics.
The ELMy H mode and QH mode are two principal

favorable operating scenarios of future burning plasma
devices, e.g., the ITER. In the ELMy H mode, the thermal
energy is released in a highly transient, episodic way, and
the induced heat load may erode plasma facing components
and degrade performance. ELM physics, especially the
presumed underlying instability mechanism (i.e., the PB
mode), has been studied extensively [4]. PB modes are
ideal MHD instabilities which couple magnetic curvature
(i.e., ballooning) drive and current gradient drive (i.e.,
kink). PB modes are thus hybrids of surface kinks (i.e.,
“peeling”) and ballooning modes. The pressure gradient
ultimately is the source for both of these effects. For
ballooning, it enters directly. For peeling, it enters via the
bootstrap current, driven by pressure gradient [5]. Recently,
the nonlinear dynamics of an ELM crash was addressed by
employing random phase scattering concepts. A nonlinear
criterion for when the ELM crash actually occurred was
also given [6]. In experiments, much effort has been

devoted to reducing the size of ELMs to an acceptable
level [7–9]. In contrast to the large crash of the pressure
profile in the ELMy H mode, the edge pressure profile
finds a steady weak oscillatory state in the QH mode, so
impurities are expelled effectively and the plasma facing
components are not eroded [10]. Thus, the QH mode is an
attractive scenario for a fusion reactor. There is well-
documented experimental evidence [11] that E × B shear
(V 0

E×B—driven by radial electrostatic field shear) is a
central ingredient in determining which type of H mode
the plasma system stays in. The most obvious aspect of
accessing the QH mode is that it requires V 0

E×B to exceed a
critical value [11]. The critical role of V 0

E×B for the L → H
transition has been extensively studied both by experiment
and theory. However, a precise understanding of the role of
V 0
E×B in the ELMy H mode to the QH mode (ELMy → Q)

evolution remains elusive [12]. In other words, how does
the critical E × B shear control access to the QH mode?
Note that theQH mode is not a state of pure linear stability,
as the edge harmonic oscillation is observed [10].
Any precise understanding of ELMy → Q evolution

requires treating the relaxation physics of the H mode in
a proper framework. The ELMy → Q evolution phenome-
non clearly is beyond any linear theory or quasilinear
theory. The H mode is a state where the pressure profile is
near marginal to PB instability, and the amplitude of the
ambient turbulence is weak. Therefore, the nonlinear
processes associated with the amplitude of the PB modes
are restricted. It has been shown that phase dynamics is a
useful concept for describing the multiscale dynamics of a
marginally stable system [13,14]. The phase determines the
macroscopic state of the system, and so the phase dynamics
of the PB modes is crucial in determining the macroscopic
state of the H-mode pedestal. In this work, we investigate
the ELMy → Q evolution mechanism by means of phase
dynamics concepts, i.e., by calculating the cross phase
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dynamics of the PB driven heat flux in the presence of an
E × B shear flow. This methodology is in distinct contrast
to the conventionally employed eigenmode and quasilinear
analysis, which implicitly take the cross phase as fixed. For
the first time, we find that if jV 0

E×Bj < jV 0
E×B;crj, the cross

phase will lock to a fixed value, for which the PB modes are
continually pumped and can reach a large amplitude. In that
case, the thermal energy tends to be released in a burst,
so the pressure profile collapses rapidly. Therefore, the
phase locked state corresponds to the ELMy H mode. If
jV 0

E×Bj > jV 0
E×B;crj, we show that the cross phase selects a

value that leaves the pressure and velocity components of
the PB modes out of phase, except for “phase slips” of short
duration. Since the phase slip is short and occurs periodi-
cally, the PB modes are weakly and periodically pumped.
The stronger the E × B shearing, the higher the phase slip
frequency will be, so the ELM asymptotes to a continuous
oscillation. The efficiency of impurity expulsion in the QH
mode is enhanced. The phase slip provides a means for
regulating thermal energy release, and hence keeps the H
modeinamorequiescentstate.Thismodelgivesanew,general
way to understand the ELMy → Q evolution mechanism.
The PB instabilities in the edge of a confined plasma are

driven by the edge pressure gradient [4]. The PB modes are
excited via phase coupling among the PB pressure and
velocity perturbations, which in turn produce the PB heat
flux. Generally, the evolution of the edge pressure (P) can
be written in the following form:

∂
∂t Pþ ~V ·∇P ¼ D∇2Pþ sDW þ Sin; ð1Þ

where the total pressure P ¼ hPiþ δP is composed of a
mean and perturbed component with h% % %i the poloidal
average. The convection velocity is ~V ¼ ~VE×B þ δ~VPB with
~VE×B the E × B shear flow driven by the radial electrostatic
field and δ~VPB is velocity perturbation associated with the
PB mode. sDW is the noise associated with the ambient
small scale drift wave turbulence (e.g., ion-temperature-
gradient turbulence). D∇2P accounts for the dissipation of
the pressure, withD a diffusion coefficient. Sin is associated
with the heat flux from the core of the Tokamak, so Eq. (1)
is a flux-driven system. The evolution equation for the
mean pressure follows as

∂
∂t hPi ¼ −∂xhδVPB;xδPiþ ðDþDTÞ∇2hPiþ Sin; ð2Þ

where the noise impacts the evolution of hPi via a turbulent
diffusion process, and hence one has hsDWi ¼ DT∇2hPi
with DT the effective diffusion coefficient. A quasisteady
state of the mean pressure profile can be sustained by the
“fueling” term Sin (Fig. 1). Since the ambient turbulence is
strongly quenched in the H mode, DT cannot reach a
significant level. hδVPB;xδPi is the heat flux driven by PB
modes. To excite PB modes, a finite cross correlation

between δVPB;x and δP is required. This is in turn
determined by their cross phase. If the cross phase is
π=2, δVPB;x and δP will be out of phase, and the pumping
of the PB modes will stop. In contrast to eigenmode or
quasilinear analysis (where the cross phase is taken fixed),
in this model the cross phase is evolving dynamically. The
framework of phase dynamics aims to capture this. A direct
way to obtain the evolution equation for the cross phase is
via the evolution equation of δP

∂
∂tδPþ δ~VPB ·∇hPiþ ~VE×B ·∇δP¼ ~sþD∇2δP; ð3Þ

where ~s ¼ ~sPB þ ~sDW with ~sPB ¼ −½∇ · ðδ~VPBδPÞ−
∂xhδVPB;xδPi'. ~sPB accounts for the random phase scatter-
ing induced by PB mode couplings, which is relevant to the
nonlinear criterion for ELM crash [6]. The noise ~s can
trigger stochastic avalanches of δP, which serves as a
mechanism for generating pressure perturbations [15].
After Fourier transformation for δP and δ~VPB, one has
δP → jδPkjei

~k·~rþiΘk and δ~VPB → jδ~VPB;kjei
~k·~rþiαk , where

Θk and αk are the phases of δPk and δVPB;k. Then the
real part of the Fourier component of the cross correlation
can be written as hδVPB;xδPik¼ jδVPB;kxjjδPkjcosðΘk−αkÞ.
The phase difference, Θk − αk, is just the cross phase
between δ~VPB;k and δPk. For kinetic velocity fields, αk acts
as a reference phase, so that without loss of generality, we
can take αk ¼ 0. Then the cross phase dynamics is
determined solely by Θk. To obtain a compact form for
its evolution, we use the approximations (i) the intensities
of δPk and δVPB;k vary slowly in time and space, i.e.,
j∂x ln jδPkjj, j∂x ln jδVPB;kjj ≪ jkj; (ii) the rate of spatial
variation of the cross phase is much smaller than jkj, i.e.,
j∇Θkj ≪ jkj; (iii) the poloidal component of ~VE×B ≫
toroidal component. Approximations (i) and (ii) are proper
for the H-mode state, where the inhomogeneities in jδPkj,
jδVPB;kj and Θk originate in the pedestal structure.
Approximation (iii) applies to toroidally confined
plasmas. Since VE×B is differential rotation, we can
reexpress the 3rd term on the left-hand side of Eq. (3)
as ~VE×B · ∇δP ¼ V 0

E×B;yΔx∂yδP, where Δx measures the

FIG. 1 (color online). Setup of the analysis.
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distance from the center of the envelope of δP. Δx can be
estimated as the radial extent of δP. Substituting the Fourier
representations of δP and δVPB into Eq. (3) and using the
approximations above yields the evolution equation for the
cross phase Θk:

d
dt

Θk ¼ kyV 0
E×BΔx −

jδVPB;kxj
jδPkj

hPi0 sinΘk þ ~sΘk ; ð4Þ

where ~sΘk is the random phase scattering induced by the
noise ~sk. Equation (4) is just the Adler equation [16], and is
also the mean field form of the Kuramoto model—the most
representative model describing synchronization phenom-
ena in populations of coupled oscillators [17]. The 1st term
on the right-hand side of Eq. (4) is the winding effect due to
shearing, which tends to modulate the cross phase between
δPk and δVPB;k. The 2nd term acts as a pinning force. It is a
nonlinear term and attracts the cross phase to a fixed value.
jδVPB;kxj=jδPkj is determined by the response function of the
relevant mode (here, the PB mode). This factor is, in turn,
determined by the structure of the PB mode, and the
dependence upon the linear growth rate, E × B shearing,
and the nonlinear saturation mechanism. Equation (4) pro-
vides a simple, straightforward way to capture the essence of
the cross phase dynamics. Equation (4) is also a general
equation for describing phase dynamics in systems with
convective interaction, and so has broad applicability.
Focusing on the influence of flow shear on the cross

phase dynamics, we first consider the scenario of no noise
(~sk ¼ 0). In this scenario, one has

d
dt

Θk ¼
jδVPB;kxj
jδPkj

hPi0ðK − sinΘkÞ; ð5Þ

with K ¼ kyV 0
E×BΔxjδPkj=ðhPi0jδVPB;kxjÞ. There exist two

types of solutions of Eq. (5): one phase locked and the other
the phase slip. The phase locked solution is

Θk ¼ arcsinK; for jKj < 1: ð6Þ

Θk is “locked” to a stable fixed value (Fig. 2) and jΘkj <
π=2, so δPk and δVPB;k stay coherent. Meanwhile, since the

mean pressure profile stays in a quasisteady state before the
crash, the thermal energy stored in the mean pressure
profile is continuously extracted by PB mode-induced heat
flux. The phase locked solution provides a robust route for
thermal energy release. With locked phase, δP will grow
large, leading to collapse of the edge pressure profile and
the formation of filamentary structures [18]. This violent
thermal energy eruption phenomenon corresponds to the
so-called ELMy H mode. VE×B shearing tends to stabilize
the ELMy H mode via upshifting the value of jΘkj, which
in turn reduces the size of the ELM. Another factor
impacting the size of the ELM is the spectrum structure
of δVPB;k. For a broad spectrum, the random scatterings
among different PB modes tend to facilitate the formation
of a state of PB turbulence, so that size of the induced ELM
is reduced [6].
The phase slip solution can be cast in the following form

Θk ¼ ωktþ hðωktÞ; for jKj > 1; ð7Þ

where ωk ¼ ðjδVPB;kxj=jδPkjÞjhPi0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 1

p
and hðxÞ is a

certain periodic function with period 2π, i.e.,
hðxþ 2πÞ ¼ hðxÞ. The specific form of hðxÞ [16] is

hðωktÞ ¼ 2tan−1
"
1

K
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 1

p
− K

K
tan

ωk

2
t
#
: ð8Þ

A very interesting property of the phase slip solution is that
most of the time, Θk ¼ 2nπ þ π=2 (here we assume
kyV 0

E×BΔx > 0; n is a positive integer); i.e., δPk and
δVPB;k stay out of phase, except for short durations of the
phase slip (Fig. 2). During the phase slips, the PB modes are
pumped, impulsively. Since most time δPk and δVPB;k are
out of phase, the thermal energy tends to be released in small
episodes and hence the H mode accesses a more quiescent
state. The frequency of the phase slip in Eq. (7) is

Ωslip ¼ kyV 0
E×BΔx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 1

p

K
: ð9Þ

In contrast to the phase locked scenario, here E × B shearing
tends to increase the frequency of the phase slips. That is, the
phase slip occurs easier when V 0

E×B becomes stronger
(Fig. 2). The increase of the edge E × B shearing will
improve the effectiveness of the QH mode for impurity
control. In the strong shearing limit,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 1

p
=K → 1, one

has Ωslip ≃ ωk. There, the cross phase evolves so that the
QH mode supports a periodic oscillation with no bursts.
The critical E × B shearing rate, governing the evolution

from phase locked state to phase slip state (i.e., the
ELMy → Q evolution), is obtained by requiring jΘkj ¼
π=2, i.e.,

jV 0
E×B;crj ¼

1

jkyΔxj
jδVPB;kxj
jδPkj

jhPi0j: ð10ÞFIG. 2 (color online). Phase locked (blue plot) vs phase slip
(green and red plots).

PRL 114, 145002 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

10 APRIL 2015

145002-3



jV 0
E×Bj < jV 0

E×B;crj corresponds to the phase locked state
and jV 0

E×Bj > jV 0
E×B;crj is the phase slip state. To obtain a

more detailed scaling of the critical shearing, one needs to
know the structure of jδVPB;kxj=jδPkj. In the linear
approximation, one has miniðγPBδVPB;kx þ ikyV 0

E×BΔx
δVPB;kxÞ ¼ −jBS;kBθ − ikxδPk, where jBS is the perturbed
bootstrap current, jBS;k ¼ −ikxϵ1=2δPk=Bθ (mi is the ion’s
mass, ni is the ion’s density, γPB the linear growth rate of the
PBmode, ϵ ¼ a=R is the inverse aspect ratio of the tokamak,
and Bθ, the strength of poloidal magnetic field) [19]. In the
case of strong E × B shearing (V 0

E×B > γPB), one obtains

jδVPB;kxj=jδPkj ≃ jð1 − ϵ1=2Þkxj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2PB þ k2yV 02

E×BΔx2
q

≃
jð1 − ϵ1=2Þkxj=jkyV 0

E×BΔxj. Substituting it into Eq. (10)
yields the critical shearing scaling:

jV 0
E×B;crj≃ τ−1A ð1 − ϵ1=2Þ1=2 β1=2

jkyΔxj

$
LP

Δx

%
1=2

; ð11Þ

where LP is defined as LP ≡ jhPij=jhPi0j and τA ¼ VA=LP
is the Alfvén time across the edge with VA ¼ B=

ffiffiffiffiffiffiffiffiffi
mini

p

(B—the strength of totalmagnetic field). β ¼ 2hPi=B2 is the
plasma beta in the edge region. In deriving Eq. (11), the
approximation jkxj≃ 1=Δxwas employed. Using the radial
force balance relation for the ions enE ¼ −VϕBθ þ ∂xhPi
(Vϕ the ion’s toroidal rotation velocity; we have assumed
ion’s poloidal rotation in the H-mode pedestal is low [11]),
one hasV 0

E×B ¼ −V 0
ϕBθ=Bþ ðhPi0=enBÞ0. Therefore, there

are two ways to facilitate accessing the QH mode: enhanc-
ing the steepness of the edge pressure profile (which requires
more external power input) and increasing the toroidal
rotation shear (which is more feasible in practice, currently).
The noise impacts the phase dynamics by introducing a

random source in the phase equation. The cross phase
exhibits different responses to the noise in the phase locked
and phase slip states. An enlightening way to understand the
noise effect is by using the “phase potential” concept [13]. In
the phase locked scenario, the potential well has finite depth.
To “kick” the cross phase out of the well, it requires the
amplitude of the noise to reach a certain level, or else the
cross phase only bounces around its fixed value (Fig. 3). In
the phase slip scenario, the potential well is flattened, so even
weak noise can induce phase slips (Fig. 3).
In theH-mode state, the level of the noise is bounded and

relatively low, so for the phase locked sate, the cross phase
keeps jumping around its locked value (blue plot in Fig. 4),
which corresponds to small bursts in the heat flux. The
random phase scattering induced by the noise becomes
crucial when the ELM approaches its crash threshold, in
which any tiny enhancement of the cross correlation may
induce an ELM crash. For the phase slip scenario, the noise
adds extra random phase slips to the coherent phase slips
induced by the mean E × B shearing. As a result, the
periodic phase slips are “smeared” by the noise and the QH

mode enters a state of weak MHD oscillations with a broad
frequency spectrum (Fig. 4).
In summary, the phase dynamics concept is shown to be

a useful framework for describing nonlinear MHD relax-
ation dynamics in the H mode, which is a near marginal,
self-organized state. By studying the E × B shearing effects
on the cross phase dynamics, we derive a physics-based
scaling of the E × B shear strength required to access the
QH mode. We show that if jV 0

E×Bj < jV0
E×B;crj, the cross

phase is locked to a fixed value and PB modes are
continually pumped. There the thermal energy is released
in large bursts with collapse of the edge pressure profile, so
the so-called ELMy H mode occurs. If jV 0

E×Bj > jV 0
E×B;crj,

δP and δVPB are coupled only during periodic, short
duration phase slips. The thermal energy is released during
short episodes and aQH mode like is induced. The periodic
phase slips can be interpreted as the edge harmonic
oscillation phenomenon, observed during the QH mode
[10]. The noise is benign for H-mode operation. In the
phase locked scenario, the noise tends to reduce the
coherence between δP and δVPB, and hence reduce
the size of the ELM. In the phase slip scenario, the noise
can increase the phase slip frequency, and hence make for
an attractive quasicontinuous “grassy ELM” state, which
efficiently expels impurities. The theoretical framework
proposed in this Letter unifies the treatment of several
different effects, such as E × B shearing (relevant to

FIG. 3 (color online). Sketch of noise effects.

FIG. 4 (color online). Noise effects on cross phase dynamics.
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coherent phase dynamics) and noise-mode couplings
(relevant to stochastic phase dynamics [6]), on the phase
dynamics. In this work, we assumed that, before the crash,
the mean pressure profile is in a quasisteady state. For
future work, it is important to construct a flux driven system
and investigate the feedback dynamics between the edge
pressure profile and the cross phase.
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